Copied to
clipboard

G = D12.34C23order 192 = 26·3

15th non-split extension by D12 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.39C24, D12.34C23, 2- 1+45S3, Dic6.34C23, C4○D49D6, (C2×Q8)⋊16D6, D4○D1210C2, (C3×D4).38D4, C37(D4○SD16), C3⋊C8.18C23, (C3×Q8).38D4, D4⋊D612C2, D4⋊S322C22, C12.271(C2×D4), C4.39(S3×C23), (C6×Q8)⋊23C22, Q8.13D610C2, D4.20(C3⋊D4), D4.Dic312C2, D4.S322C22, Q8.27(C3⋊D4), (C3×D4).27C23, D4.27(C22×S3), C3⋊Q1619C22, C6.173(C22×D4), (C3×Q8).27C23, Q8.37(C22×S3), Q8.11D611C2, (C2×C12).120C23, Q82S320C22, C4○D12.33C22, C4.Dic318C22, (C3×2- 1+4)⋊2C2, (C2×D12).186C22, (C2×C3⋊C8)⋊26C22, (C2×C6).87(C2×D4), C4.77(C2×C3⋊D4), (C3×C4○D4)⋊9C22, C22.8(C2×C3⋊D4), (C2×Q82S3)⋊32C2, C2.46(C22×C3⋊D4), (C2×C4).104(C22×S3), SmallGroup(192,1396)

Series: Derived Chief Lower central Upper central

C1C12 — D12.34C23
C1C3C6C12D12C2×D12D4○D12 — D12.34C23
C3C6C12 — D12.34C23
C1C2C4○D42- 1+4

Generators and relations for D12.34C23
 G = < a,b,c,d,e | a12=b2=c2=d2=1, e2=a6, bab=dad=a-1, ac=ca, eae-1=a7, cbc=a6b, dbd=a10b, ebe-1=a3b, cd=dc, ce=ec, ede-1=a9d >

Subgroups: 664 in 258 conjugacy classes, 107 normal (20 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, D4, Q8, Q8, Q8, C23, Dic3, C12, C12, C12, D6, C2×C6, C2×C6, C2×C8, M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C4○D4, C3⋊C8, C3⋊C8, Dic6, C4×S3, D12, D12, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×D4, C3×Q8, C3×Q8, C3×Q8, C22×S3, C8○D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, C2×C3⋊C8, C4.Dic3, D4⋊S3, D4.S3, Q82S3, C3⋊Q16, C2×D12, C4○D12, S3×D4, Q83S3, C6×Q8, C6×Q8, C3×C4○D4, C3×C4○D4, C3×C4○D4, D4○SD16, C2×Q82S3, Q8.11D6, D4.Dic3, D4⋊D6, Q8.13D6, D4○D12, C3×2- 1+4, D12.34C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C3⋊D4, C22×S3, C22×D4, C2×C3⋊D4, S3×C23, D4○SD16, C22×C3⋊D4, D12.34C23

Smallest permutation representation of D12.34C23
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 15)(16 24)(17 23)(18 22)(19 21)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)(37 45)(38 44)(39 43)(40 42)(46 48)
(1 34)(2 35)(3 36)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 31)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 36)(9 35)(10 34)(11 33)(12 32)(13 43)(14 42)(15 41)(16 40)(17 39)(18 38)(19 37)(20 48)(21 47)(22 46)(23 45)(24 44)
(1 22 7 16)(2 17 8 23)(3 24 9 18)(4 19 10 13)(5 14 11 20)(6 21 12 15)(25 43 31 37)(26 38 32 44)(27 45 33 39)(28 40 34 46)(29 47 35 41)(30 42 36 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,15)(16,24)(17,23)(18,22)(19,21)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(37,45)(38,44)(39,43)(40,42)(46,48), (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,36)(9,35)(10,34)(11,33)(12,32)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,48)(21,47)(22,46)(23,45)(24,44), (1,22,7,16)(2,17,8,23)(3,24,9,18)(4,19,10,13)(5,14,11,20)(6,21,12,15)(25,43,31,37)(26,38,32,44)(27,45,33,39)(28,40,34,46)(29,47,35,41)(30,42,36,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,15)(16,24)(17,23)(18,22)(19,21)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(37,45)(38,44)(39,43)(40,42)(46,48), (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,36)(9,35)(10,34)(11,33)(12,32)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,48)(21,47)(22,46)(23,45)(24,44), (1,22,7,16)(2,17,8,23)(3,24,9,18)(4,19,10,13)(5,14,11,20)(6,21,12,15)(25,43,31,37)(26,38,32,44)(27,45,33,39)(28,40,34,46)(29,47,35,41)(30,42,36,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,15),(16,24),(17,23),(18,22),(19,21),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31),(37,45),(38,44),(39,43),(40,42),(46,48)], [(1,34),(2,35),(3,36),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,31),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,36),(9,35),(10,34),(11,33),(12,32),(13,43),(14,42),(15,41),(16,40),(17,39),(18,38),(19,37),(20,48),(21,47),(22,46),(23,45),(24,44)], [(1,22,7,16),(2,17,8,23),(3,24,9,18),(4,19,10,13),(5,14,11,20),(6,21,12,15),(25,43,31,37),(26,38,32,44),(27,45,33,39),(28,40,34,46),(29,47,35,41),(30,42,36,48)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A4B4C4D4E4F4G4H6A6B···6F8A8B8C8D8E12A···12J
order12222222234444444466···68888812···12
size112224121212222224441224···4661212124···4

39 irreducible representations

dim11111111222222248
type++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6C3⋊D4C3⋊D4D4○SD16D12.34C23
kernelD12.34C23C2×Q82S3Q8.11D6D4.Dic3D4⋊D6Q8.13D6D4○D12C3×2- 1+42- 1+4C3×D4C3×Q8C2×Q8C4○D4D4Q8C3C1
# reps13313311131346221

Matrix representation of D12.34C23 in GL6(𝔽73)

110000
7200000
0001720
00720721
0000721
0000711
,
7200000
110000
0001072
0010072
0000172
0000072
,
100000
010000
00666767
0066661
00120067
001212061
,
010000
100000
0067676712
00676766
0006106
006161012
,
43130000
60300000
0001172
0001072
0072100
0002072

G:=sub<GL(6,GF(73))| [1,72,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,0,0,0,72,72,72,71,0,0,0,1,1,1],[72,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,72,72,72,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,6,12,12,0,0,6,6,0,12,0,0,67,6,0,0,0,0,67,61,67,61],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,67,67,0,61,0,0,67,67,61,61,0,0,67,6,0,0,0,0,12,6,6,12],[43,60,0,0,0,0,13,30,0,0,0,0,0,0,0,0,72,0,0,0,1,1,1,2,0,0,1,0,0,0,0,0,72,72,0,72] >;

D12.34C23 in GAP, Magma, Sage, TeX

D_{12}._{34}C_2^3
% in TeX

G:=Group("D12.34C2^3");
// GroupNames label

G:=SmallGroup(192,1396);
// by ID

G=gap.SmallGroup(192,1396);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,675,136,1684,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=b^2=c^2=d^2=1,e^2=a^6,b*a*b=d*a*d=a^-1,a*c=c*a,e*a*e^-1=a^7,c*b*c=a^6*b,d*b*d=a^10*b,e*b*e^-1=a^3*b,c*d=d*c,c*e=e*c,e*d*e^-1=a^9*d>;
// generators/relations

׿
×
𝔽