metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C12.39C24, D12.34C23, 2- 1+4⋊5S3, Dic6.34C23, C4○D4⋊9D6, (C2×Q8)⋊16D6, D4○D12⋊10C2, (C3×D4).38D4, C3⋊7(D4○SD16), C3⋊C8.18C23, (C3×Q8).38D4, D4⋊D6⋊12C2, D4⋊S3⋊22C22, C12.271(C2×D4), C4.39(S3×C23), (C6×Q8)⋊23C22, Q8.13D6⋊10C2, D4.20(C3⋊D4), D4.Dic3⋊12C2, D4.S3⋊22C22, Q8.27(C3⋊D4), (C3×D4).27C23, D4.27(C22×S3), C3⋊Q16⋊19C22, C6.173(C22×D4), (C3×Q8).27C23, Q8.37(C22×S3), Q8.11D6⋊11C2, (C2×C12).120C23, Q8⋊2S3⋊20C22, C4○D12.33C22, C4.Dic3⋊18C22, (C3×2- 1+4)⋊2C2, (C2×D12).186C22, (C2×C3⋊C8)⋊26C22, (C2×C6).87(C2×D4), C4.77(C2×C3⋊D4), (C3×C4○D4)⋊9C22, C22.8(C2×C3⋊D4), (C2×Q8⋊2S3)⋊32C2, C2.46(C22×C3⋊D4), (C2×C4).104(C22×S3), SmallGroup(192,1396)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C4○D4 — 2- 1+4 |
Generators and relations for D12.34C23
G = < a,b,c,d,e | a12=b2=c2=d2=1, e2=a6, bab=dad=a-1, ac=ca, eae-1=a7, cbc=a6b, dbd=a10b, ebe-1=a3b, cd=dc, ce=ec, ede-1=a9d >
Subgroups: 664 in 258 conjugacy classes, 107 normal (20 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, D4, Q8, Q8, Q8, C23, Dic3, C12, C12, C12, D6, C2×C6, C2×C6, C2×C8, M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C4○D4, C3⋊C8, C3⋊C8, Dic6, C4×S3, D12, D12, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×D4, C3×Q8, C3×Q8, C3×Q8, C22×S3, C8○D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, C2×C3⋊C8, C4.Dic3, D4⋊S3, D4.S3, Q8⋊2S3, C3⋊Q16, C2×D12, C4○D12, S3×D4, Q8⋊3S3, C6×Q8, C6×Q8, C3×C4○D4, C3×C4○D4, C3×C4○D4, D4○SD16, C2×Q8⋊2S3, Q8.11D6, D4.Dic3, D4⋊D6, Q8.13D6, D4○D12, C3×2- 1+4, D12.34C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C3⋊D4, C22×S3, C22×D4, C2×C3⋊D4, S3×C23, D4○SD16, C22×C3⋊D4, D12.34C23
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 15)(16 24)(17 23)(18 22)(19 21)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)(37 45)(38 44)(39 43)(40 42)(46 48)
(1 34)(2 35)(3 36)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 31)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 36)(9 35)(10 34)(11 33)(12 32)(13 43)(14 42)(15 41)(16 40)(17 39)(18 38)(19 37)(20 48)(21 47)(22 46)(23 45)(24 44)
(1 22 7 16)(2 17 8 23)(3 24 9 18)(4 19 10 13)(5 14 11 20)(6 21 12 15)(25 43 31 37)(26 38 32 44)(27 45 33 39)(28 40 34 46)(29 47 35 41)(30 42 36 48)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,15)(16,24)(17,23)(18,22)(19,21)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(37,45)(38,44)(39,43)(40,42)(46,48), (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,36)(9,35)(10,34)(11,33)(12,32)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,48)(21,47)(22,46)(23,45)(24,44), (1,22,7,16)(2,17,8,23)(3,24,9,18)(4,19,10,13)(5,14,11,20)(6,21,12,15)(25,43,31,37)(26,38,32,44)(27,45,33,39)(28,40,34,46)(29,47,35,41)(30,42,36,48)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,15)(16,24)(17,23)(18,22)(19,21)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(37,45)(38,44)(39,43)(40,42)(46,48), (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,36)(9,35)(10,34)(11,33)(12,32)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,48)(21,47)(22,46)(23,45)(24,44), (1,22,7,16)(2,17,8,23)(3,24,9,18)(4,19,10,13)(5,14,11,20)(6,21,12,15)(25,43,31,37)(26,38,32,44)(27,45,33,39)(28,40,34,46)(29,47,35,41)(30,42,36,48) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,15),(16,24),(17,23),(18,22),(19,21),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31),(37,45),(38,44),(39,43),(40,42),(46,48)], [(1,34),(2,35),(3,36),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,31),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,36),(9,35),(10,34),(11,33),(12,32),(13,43),(14,42),(15,41),(16,40),(17,39),(18,38),(19,37),(20,48),(21,47),(22,46),(23,45),(24,44)], [(1,22,7,16),(2,17,8,23),(3,24,9,18),(4,19,10,13),(5,14,11,20),(6,21,12,15),(25,43,31,37),(26,38,32,44),(27,45,33,39),(28,40,34,46),(29,47,35,41),(30,42,36,48)]])
39 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | ··· | 6F | 8A | 8B | 8C | 8D | 8E | 12A | ··· | 12J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | ··· | 6 | 8 | 8 | 8 | 8 | 8 | 12 | ··· | 12 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 12 | 2 | 4 | ··· | 4 | 6 | 6 | 12 | 12 | 12 | 4 | ··· | 4 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D6 | D6 | C3⋊D4 | C3⋊D4 | D4○SD16 | D12.34C23 |
kernel | D12.34C23 | C2×Q8⋊2S3 | Q8.11D6 | D4.Dic3 | D4⋊D6 | Q8.13D6 | D4○D12 | C3×2- 1+4 | 2- 1+4 | C3×D4 | C3×Q8 | C2×Q8 | C4○D4 | D4 | Q8 | C3 | C1 |
# reps | 1 | 3 | 3 | 1 | 3 | 3 | 1 | 1 | 1 | 3 | 1 | 3 | 4 | 6 | 2 | 2 | 1 |
Matrix representation of D12.34C23 ►in GL6(𝔽73)
1 | 1 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 72 | 0 |
0 | 0 | 72 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 71 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 72 |
0 | 0 | 1 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 6 | 67 | 67 |
0 | 0 | 6 | 6 | 6 | 61 |
0 | 0 | 12 | 0 | 0 | 67 |
0 | 0 | 12 | 12 | 0 | 61 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 67 | 67 | 67 | 12 |
0 | 0 | 67 | 67 | 6 | 6 |
0 | 0 | 0 | 61 | 0 | 6 |
0 | 0 | 61 | 61 | 0 | 12 |
43 | 13 | 0 | 0 | 0 | 0 |
60 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 72 |
0 | 0 | 0 | 1 | 0 | 72 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 72 |
G:=sub<GL(6,GF(73))| [1,72,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,0,0,0,72,72,72,71,0,0,0,1,1,1],[72,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,72,72,72,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,6,12,12,0,0,6,6,0,12,0,0,67,6,0,0,0,0,67,61,67,61],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,67,67,0,61,0,0,67,67,61,61,0,0,67,6,0,0,0,0,12,6,6,12],[43,60,0,0,0,0,13,30,0,0,0,0,0,0,0,0,72,0,0,0,1,1,1,2,0,0,1,0,0,0,0,0,72,72,0,72] >;
D12.34C23 in GAP, Magma, Sage, TeX
D_{12}._{34}C_2^3
% in TeX
G:=Group("D12.34C2^3");
// GroupNames label
G:=SmallGroup(192,1396);
// by ID
G=gap.SmallGroup(192,1396);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,675,136,1684,235,102,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^12=b^2=c^2=d^2=1,e^2=a^6,b*a*b=d*a*d=a^-1,a*c=c*a,e*a*e^-1=a^7,c*b*c=a^6*b,d*b*d=a^10*b,e*b*e^-1=a^3*b,c*d=d*c,c*e=e*c,e*d*e^-1=a^9*d>;
// generators/relations